Rapid Analysis : Clustering of Toxicity for Vaccine Lots

By Craig Paardekooper

Data Source:

2021 data VAERS USA : https://howbad.info/tox-data.csv

Data fields were

o |ot size shipped for 150 different lots - https://howbad.info/lotsize.xlsx
o number of adverse reaction reports for each lot

Toxicity was defined as number of adverse reactions per 100,000 doses shipped for each lot.

Method :
K-means clustering was used to see if there was any grouping of toxicities.

The “Elbow method” showed 3 clusters of toxicity —

1201

1004

804

601

T T T T T T T
25 5.0 7.5 10.0 125 15.0 175

k-means clustering was then applied based on 3 clusters

Results :

Cluster 1

low toxicity - averaging 24.5 adverse reactions per 100,000 doses shipped
88 lots = 59% of the total number of lots analysed (88 out of 150)

Pfizer F series (FA, FC, FD, FE, FF, FG, FH, FJ)

Cluster 2

highest toxicity - averaging 231.7 adverse reactions per 100,000 doses shipped


https://howbad.info/tox-data.csv
https://howbad.info/lotsize.xlsx

15 lots = 10% of the total number of lots analysed (15 out of 150)

Pfizer E series (EH, EJ, EK, EL)

Cluster 3
medium toxicity - averaging 89 adverse reactions per 100,000 doses shipped
47 lots = 31% of the total number of lots analysed (47 out of 150)

Pfizer E series (EL, EM, EN, ER, EW)

Spread of Toxicity for the 3 clusters of Lots

350
b 300
[=]
a
a
a 250
§ M series1
eries
5 T 200
O
w8 M series2
E £
a v 150
2 T B series3
w
o
o 100 %
S T
=]
<

50
0 & &

Discussion :

For US data we see that almost two thirds of the lots were of low toxicity, almost one third of
medium toxicity and 10% of high toxicity.

USA data shows —

High toxicity 10%  Pfizer E series (EH, EJ, EK, EL)
Medium toxicity 31%  Pfizer E series (EL, EM, EN, ER, EW)
Low toxicity 59%  Pfizer F series (FA, FC, FD, FE, FF, FG, FH, FJ)

We can compare this to the Denmark study
Denmark data showed —
High toxicity 4% Pfizer EJ EK ELEM

Medium toxicity 64%  Pfizer EP ER ET EW EX EY FA FC FD FE FF and FG



Low toxicity 32%  Pfizer FG FH FJ FK FL FM

Ref : Danish Study

Placebo Batch Numbers

The Pfizer lot number series that correspond to high, medium and low toxicity are similar in both the
USA data and in the Danish study.

In both cases, as the alphabet ascends the toxicity appears to decrease.

The main difference between the USA and Danish data is that in the USA there appear to be a higher
proportion of high toxicity and low toxicity batches. In other words there is more of a polarisation —
with less medium toxicity.

So in the USA 10% of the batches were highly toxic, and 60% were low toxicity. The larger number of
low toxicity batches would generate more support for the vaccines, which would help maintain the
vaccine rollout despite a larger % of high toxicity batches.

These findings are compatible with the V-Safe findings where 7.7% of vaccinated sought medical
treatment after vaccination for COVID-19. See V-Safe Data

The average adverse reactions per 100,000 doses shipped provides a relative idea of toxicity
variation between batches. However this does not take into account the under-reporting factor.

Repeating the Study

| also used the Silhouette method for determining number of clusters. Surprisingly it showed a peak
at 7 clusters.


https://howbad.info/bad_dose_chances7.pdf
https://howbad.info/placebo-batch-numbers.pdf
https://howbad.info/index.html#vsafe

0.72 -

0.70 -

0.68 -

0.66 -

0.64 -

0.62

0.60 -

| reasoned that this might be a finer gradation of toxicity categories at the alphabet letter level, as

had previously been noticed here —

4000

3500

£8/8UM
029 HL

070MY
€€54Sd

80Z9MN
8T95)
| GE/8YD
2070M4
T€L8d4
£82174
L ] 6879H4
.0. 76544
o Tv883d
Ld 'Y v0TLad
(X"~ 1] BETE?)
e o vSyLey
9261

® v850X3

60TvM3
£T80MD

TTZ0M3

9ZTOM3
707903
T€2643
£€98Y3
00Z943
TEL0Y3
¥65Ld3
® 82103
09£9N3

£0Z9N3

vOZSN3

YOZON3

® 0T68A3

“ o @ PY vov613

986813

€913
eoe ° 81€73
o ARE]
£8/8)3
TZ€0)3
LA 687173
S89TH3
8vvy8a3
6686V3
992623
8619 3
£T924D
(2849
70008V

¢ Do
L

1500

1000

500
0 o e

3000
2500
2000

Clusters (Howbad.info)

Results of applying K-means clustering with parameter set to 7 clusters

Here are the toxicities of each of the 7 clusters


https://howbad.info/clusters.html

7 Clusters of Toxicity
350

=]
250

200

150

100

-
50 #
0 ==

And here are the lot numbers corresponding to each of these clusters —

e C(Clusterl Tox =309-274 Lots = EK

e Cluster 2 Tox = 215-252 Lots = EH, EJ, EL

e C(Cluster 3 Tox = 146-192 Lots = EL

e C(Cluster4 Tox =92-134 Lots = EL, EM, EN

e C(Cluster5 Tox =57-86 Lots = EN, EP, ER, EW

e Cluster6 Tox = 25-52 Lots = ER, EW, FA, FC, FD, FE, FF, FH
e Cluster?7 Tox = 0-22 Lots = FD, FE, FF, FG, FH, FJ, FL

When these clusters are arranged in order of their toxicity, they display an ascending alpha-numeric
series of lot numbers.

The clusters of higher toxicity do partition at alphabetic boundaries — for example the highest toxicity
cluster only has lot numbers starting with EK, and the third most toxic only has lot numbers
beginning with EL.

As toxicity descends, there is more alphabetic overlap between clusters, however an ascending
alphabetic range is still discernible.

Conclusion

Here | have used k-means clustering to define 7 categories of toxicity. These categories appear
spontaneously as groupings within the data. The categories partition at alphabetic boundaries. This
will help those who were coerced so they can get a better idea of the short and medium term risks
associated with their Pfizer batch code.

The vaccine lots show huge variability in toxicity. This variability appears to be systematic since
toxicity varies depending on the lot codes, and this variation is linear as the lot codes ascend
alphanumerically. A case of “Death by alphabet”.



Appendix Code Used in Analysis

import os, re, glob

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
import folium

from sklearn.preprocessing import - Standardscaler
from sklearn.cluster import:KMeans
from IPython.display import»IFrame
from IPython.display import» Image
from tqdm import tqdm

import warnings
warnings.filterwarnings('ignore")
#matplotlib»inline

toxic df = pd.read csv(r"C:\Users\User\Documents\lot-toxicity-2821-data.csv")

toxicity = pd.DatafFrame(columns=["Tox'])
toxicity[ 'Tox'] = toxic df['Tox']

scaler

= StandardScaler()
X scaled =

scaler.fit(toxicity).transtorm(toxicity.astype(np.float))

cluster_range = range(1, 20) # this is the number of clusters
cluster_errors = []
for num_clusters in cluster range:
clusters = KMeans(num_clusters) #
clusters.Tit(X scaled)
cluster_errors.append(clusters.inertia )

clusters_df = pd.DataFrame({"num _clusters":cluster_range,"cluster errors":cluster_errors})
plt.figure(figsize=(16,6))
plt.plot(clusters_df.num clusters,clusters_df.cluster_errors,marker= "0");

import pandas as pd
import os, re, glob

import numpy as np

import matplotlib.pyplot as plt
import folium

from sklearn.preprocessing import——StandardScaler
from sklearn.cluster import-KMeans
from IPython.display import* IFrame
from IPython.display import*Image
from tgdm import tqdm

import warnings

import silhouetteplot
warnings.filterwarnings('ignore")
%matplotlib inline



from sklearn.metrics import silhouette score
cluster _range = range(2,10)

silhouette avg = []

for x in cluster range :

clusterer = KMeans(n clusters=x)
clusterer.fit(X_scaled)

labels = clusterer.labels

score = silhouette score(X scaled, labels)
silhouette avg.append(score)

plt.plot(cluster range, silhouette avg)
plt.show()

#Fitting K-Means to the dataset
kmeans = KMeans(n_clusters = 7, init = 'k-means++', random_state = 18)
y_kmeans = kmeans.fit predict(X scaled)

# y kmeans 1is an array with a single dimension with a number representi

#beginning of the cluster numbering with 1 instead of @

y_kmeansl=y kmeans+1

# New List called cluster

cluster = list(y _kmeansl) # we convert the y kmeans array to a list, th
# Adding cluster to our data set

toxicity[ "cluster'] = cluster

toxicity.to csv("toxicity7cluster.csv”, index=False)

toxicity["cluster”].value counts()

kmeans mean cluster+=+pd.DataFrame(round(toxicity.groupby('cluster').mean(),1))

kmeans_mean_cluster

rate = []

for 1 ,r in kmeans_mean_cluster.iterrows():
ratel = r['Tox']

rate.append(ratel)

kmeans_mean_cluster.head(9)



